Local Accuracy Measurement for Face Recognition System using Numerous Classifier (PCA, GA and ANN)
نویسندگان
چکیده
Between the various biometric methods, Face Recognition has become one of the most burning topic tasks in the pattern recognition field during the past decades. In This Work a Face Recognition System has been developed By applying different multiple classifier selection schemes on the output of three different classification methods namely Artificial Neural Network, Genetic Algorithm And Euclidean distance measure based on Principal Component Analysis dimensionality reduction technique. Dynamic classifier selection technique using classifier of local accuracy measurement is to look up the individual correctness of individual classifier and select the best one from them. Here it is proposed a classifier local accuracy measurement technique which is used to dynamic classifier selection algorithm. From the result and performance analysis it can be said that numerous classifier selection schemes give better performance than single classifier and dynamic classifier selection algorithm using proposed classifier local accuracy measurement technique gives stable high and better performance.
منابع مشابه
Modelling of Eyeball with Pan/Tilt Mechanism and Intelligent Face Recognition Using Local Binary Pattern Operator
This paper describes the vision system for a humanoid robot, which includes the mechanism that controls eyeball orientation and blinking process. Along with the mechanism designed, the orientation of the camera, integrated with controlling servomotors. This vision system is a bio-mimic, which is designed to match the size of human eye. This prototype runs face recognition and identifies, match...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملFace Detection at the Low Light Environments
Today, with the advancement of technology, the use of tools for extracting information from video are much wider in terms of both visual power and the processing power. High-speed car, perfect detection accuracy, business diversity in the fields of medical, home appliances, smart cars, humanoid robots, military systems and the commercialization makes these systems cost effective. Among the most...
متن کامل2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کامل